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Abstract
In this letter we compute the functional derivative of the induced charge
density, on a thin conductor, consisting of the union of g + 1 disjoint intervals,
J := ∪g+1

j=1(aj , bj ), with respect to an external potential. In the context of
random matrix theory this object gives the eigenvalue fluctuations of Hermitian
random matrix ensembles where the eigenvalue density is supported on J.

PACS numbers: 02.10.Yn, 02.30.Rz, 02.40.Ky

1. Introduction

Consider the minimization problem

E = inf
µ∈A

[
−
∫ ∫

log |x − t |µ(x)µ(t) dx dt +
∫

v(x)µ(x) dx

]
(1)

where the set A consists of all positive Lebesgue measures µ(t) dt such that
∫
µ(t) dt = 1.

The above formula describes the electrostatic equilibrium in which charges are placed on the
real line in the presence of an external field v(x). For analytic external fields it is well known
that the infimum (1) is attained at a unique measure σ(x) dx which is called the induced charge
density. Moreover, the support of the induced charge density is generically characterized by a
finite number of disjoint intervals J := ∪g+1

j=1(aj , bj ) [11].
At electrostatic equilibrium, the induced charged density σ(x), x ∈ J , satisfies the

following integral equation

v(x)− 2
∫
J

ln |x − t | σ(t) dt = A = constant x ∈ J. (2)

where the constant A is the Lagrange multiplier which fixes the constraint∫
J

σ (x) dx = 1. (3)
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To determine σ , we convert (2) into a singular integral equation by taking the derivative of (2)
w.r.t. x; that is,

2P
∫
J

σ (t) dt

x − t
= dv(x)

dx
x ∈ J (4)

where P denotes the principal value of the singular integral. For generic potential v such that
v′(x) is Hölder continuous1, the solution, σ , of the singular integral equation (4), which is
bounded at the endpoints of J , is necessarily zero there [10]; that is,

σ(aj ) = 0 = σ(bj ) j = 1, . . . , g + 1.

The endpoints {aj , bj }g+1
j=1 of the support of σ are determined by (3),∫ aj+1

bj

σ (x) dx = 0 j = 1, 2, . . . , g (5)

and by the moment conditions∫
J

xkv′(x) dx√∏g+1
j=1(x − aj )(x − bj )

= 0 k = 0, . . . , g (6)

(see [9].) Equation (2) also arises from a mean-field approach to random Hermitian matrix
ensembles [4]; σ(x) is the averaged eigenvalue density, 〈�(x)〉, where �(x) := ∑N

ν=1 δ(x −
xν)/N is the microscopic density of the eigenvalues, {xν}Nν=1, of a N × N Hermitian random
matrix. The validity of the mean-field approximation, for largeN , is discussed in [5]. An easy
calculation shows that a functional derivative [3] of σ w.r.t. v is the density–density correlation
function2:

C��(x, t) := δσ (x)

δv(t)
= δ〈�(x)〉

δv(t)
= 〈�(x)〉〈�(t)〉 − 〈�(x)�(t)〉 x, t ∈ J (7)

and must satisfy the obvious sum rules,
∫
J

C��(x, t) dt = 0 = ∫
J
C��(x, t) dx. Furthermore,

from (7), C��(x, t) = C��(t, x). In this work we explicitly determine C��(x, t) as a function of
the endpoints of the interval J := ∪g+1

j=1(aj , bj ). It turns out that the density–density correlation
function can be identified with the Bergman kernel of a Riemann surface which is a two-sheeted
covering of the complex plane.

2. Determination of the density–density correlation function

First, we establish some notation. We consider the hyperelliptic Riemann surface Sg of genus
g, defined by the equation

Sg :=
{
(y, z), z ∈ CP

1, y2 =
g+1∏
j=1

(z− aj )(z− bj )

}
.

1 A function f (x) is Hölder continuous if

|f (x1)− f (x2)| < c|x1 − x2|δ

for all x1, x2 in the domain of f (x), for a constant c > 0 and 0 < δ � 1.
2 Taking a functional derivative of

〈�(x)〉 :=
∫

exp[−(H [�] +
∫

v(x′)�(x′) dx′)]�(x)D�∫
exp[−(H [�] +

∫
v(x′)�(x′) dx′)] D�

w.r.t. v(t) gives (7).
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Figure 1. The cycles {αj , βj , δj }gj=1. The part of the cycles that lie in the lower sheet are indicated
by broken lines.

The projection (y, z) → z defines Sg as a two-sheeted covering of the complex plane C cut
along J. On Sg we define the canonical cycles {αk, βk}gk=1 shown in figure 1. Let

Ug(x) := i

π

(
xg +

g−1∑
j=0

κjx
j

)
(8)

with κj , j = 1, . . . , g, determined by∫ aj+1

bj

Ug(x)

y(x)
dx = 0 j = 1, . . . , g. (9)

For completeness we first determine A as a function of v. Multiply (2) by Ug(x)/y(x), integrate
w.r.t. x over J and noting that∫

J

Ug(x)

y(x)
dx = 1

we find

A[v] = −2
∫
J

σ (t) dt
∫
J

Ug(x)

y(x)
ln(bg+1 − x) dx +

∫
J

v(x)Ug(x)

y(x)
dx

= 2V[J ] +
∫
J

v(x)Ug(x)

y(x)
dx (10)

where

V[J ] :=
∫ ∞

bg+1

(
π

i

Ug(t)

y(t)
− 1

t

)
dt − ln bg+1. (11)

The above integral is along any smooth path connecting bg+1 and ∞+ laying on the upper half-
plane of the upper sheet. So in the absence of the external field, A[0]/2 is entirely determined
by the endpoints of the conductor.

Note that

0 = δ

(∫
J

σ (x) dx

)
=

g+1∑
j=1

(
δbjσ (bj )− δajσ (aj )

)
+
∫
J

δσ (x) dx =
∫
J

δσ (x) dx. (12)

Using similar calculations,∫ aj+1

bj

δσ (x) dx = 0 j = 1, . . . , g. (13)

So performing a variation on (2) gives

δv(x)− 2
g+1∑
j=1

(
ln |x − bj | σ(bj )− ln |x − aj | σ(aj )

)− 2
∫
J

ln |x − t | δσ (t) dt = δA. (14)
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Also in this case, we multiply the above relation by Ug(x)/y(x), integrate w.r.t. x over J and,
by (10), we obtain

δA =
∫
J

Ug(x)

y(x)
δv(x) dx. (15)

Taking a derivative w.r.t. x on (14) produces the singular integral equation

2P
∫
J

δσ (t)

x − t
dt = dδv(x)

dx
x ∈ J. (16)

Now a possible form for δσ (x), x ∈ J , reads

δσ (x) = 1

2π2y(x)
P

∫
J

y(t)

t − x

dδv(t)

dt
dt −

g∑
k=1

ϕk(x)

2π2y(x)

∫
J

dδv(t)

dt
y(t)

(∫
αk

ds

(t − s)y(s)

)
dt.

(17)

In order that δσ actually satisfies (16), ϕk is taken to be a polynomial of degree g − 1:

ϕk(x) =
g∑
l=1

γklx
g−l k = 1, . . . , g (18)

with yet undetermined γkl (see [6]). With this choice ofϕk , equations (12) and (16) are satisfied.
Now ϕk(x) dx/y(x) is an Abelian differential of the first kind on the Riemann surface Sg . If
we choose γkl in such way that∫

αj

ϕk(x)

y(x)
dx = δkj (19)

then (13) is also satisfied. This completes the solution of (16). To see that (13) is satisfied,
note that ∫ aj+1

bj

δσ (x) dx = −1

2

∫
δj

δσ (x) dx

where

δj = αj \ αj+1 j = 1, . . . , g − 1

δg = αg. (20)

Here the cycles δj , j = 1, . . . , g, are shown in figure 1. Integrating by parts in (17) and noting
that y(aj ) = 0 = y(bj ) gives

δσ (x) = P

∫
J

C��(x, t)δv(t) dt x ∈ J (21)

where

C��(x, t) := ∂

∂t

(
y(t)

2π2y(x)(x − t)
−

g∑
k=1

ϕk(x)y(t)

2π2y(x)

∫
αk

ds

(s − t)y(s)

)
x, t ∈ J. (22)

An inspection of (22) shows that sum rules are satisfied. Furthermore, C��(x, t) can be
identified with the Bergman kernel of the Riemann surface Sg and is therefore symmetric
under the exchange of x and t , namely C��(x, t) = C��(t, x) [8, p 218].

A more direct way to check the symmetry property of C��(x, t) is shown below. Let
πj (t) dt/y(t) be an Abelian differential of the second kind with vanishing α periods∫

αk

πj (t)

y(t)
dt = 0 j, k = 1, . . . , g (23)
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and with behaviour at infinity

πj (t)

y(t)
dt ∼ ± (t j−1 + O(t−2)

)
dt t ∼ ∞±. (24)

The quantity πj is a polynomial in t of degree g + j :

πj (t) = (0t
g+j + (1t

g+j−1 + . . . + (j t
g + a1t

g−1 + a2t
g−2 + . . . + ag (25)

where the constants aj ’s are determined by (23) and the constants (k’s determined by (24) are
the coefficients of the expansion

y(z) ∼ zg+1

(
(0 +

(1

z
+
(2

z2
+ . . .

)
z ∼ ∞+. (26)

From the Riemann bi-linear relations the second term in (22) can be expressed in terms of
πj (t), without involving the constants γjk [1, 7]. So,

2π2C��(x, t) = y ′(t)
y(x)(x − t)

+
y(t)

y(x)(x − t)2
+

1

y(x)y(t)

g∑
k=1

xg−k
k∑

j=1

(2j)(k−jπj (t). (27)

The reader can now check that C��(x, t)− C��(t, x) vanishes identically in x and t. For g = 1
this symmetry can be established in a straightforward calculation. The kernel C�� will be used,
in a later publication, for computing the distribution functions of linear statistics which is of
interest in random matrix theory. For a discussion concerning linear statistics, see [2].
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